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ABSTRACT
In this paper we will show that every totally positive unit of the real
holomorphy ring of a formally real field is a sum of 2n-th powers of totally
positive units for all natural numbers n. Moreover, in the case n = 1 we

give a bound on the number of summands required in such a representation.

Introduction

At the Oberwolfach conference on “real algebraic geometry” in 1987 H.-W. Schiil-
ting raised the following question:

PROBLEM: Let f,g € R[X] be of the same degree and without real zeroes. As-
sume that f/g is positive definite. Are there f;,g; € R[X] (1 <1 < n) without
real zeroes with deg f; = degg; (1 <i < n) such that

LS (Y

g9 D\
for a certain natural number n?

Since a rational function h € R(X) is a totally positive unit of the real holo-
morphy ring H(R(X)) of R(X) iff it is positive definite and of the form h = f/g
for some f, g € R[X] of the same degree and without real zeroes we can generalize
the above problem:
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PROBLEM: Is every totally positive unit of the real holomorphy ring of a formally
real field a sum of squares of units 7

The aim of this paper is to give a positive answer to both problems. We actually
prove the stronger result that every totally positive unit of the real holomorphy
ring is a sum of 2n-th powers of totally positive units for arbitrary n € N.

1. Basic notations and preliminary remarks

Throughout this paper K will be a formally real field. Thus char(K) = 0 and
we may assume that Q C K. The real holomorphy ring of K will be denoted
by H(K). By definition H(K) is the intersection of all residually real valuation
rings (i.e. valuation rings with formally real residue class field) of K. Various
descriptions of H(K) are well-known, e.g.

(1) H(K)={a€K|n:i:anKzforsomeneN}

(see e.g. Theorem (2.16),[B1]). Here > K?Z is the set of sums of squares of
elements of K. It is also the set of totally positive elements of K (i.e. elements
which are positive w.r.t. every ordering of K). See e.g. [P], Corollary 1.9.
Obviously Q C H(K).

For a,b € K we define

a<beb-ac) K
Clearly < is a preordering of K. It is easy to see that
x 2 1
(2) H(K) OZK ={a€K|;§a§n for some n € N}.

This is the set of the totally positive units of H(K). We denote it by UT(K).
The following lemma is an immediate consequence of (1) and (2).

LEMMA 1.1: i,
(i) For ay,...,an, € K we have Za? € HK) € ay,...,a, € H(K).

=1

(ii) For a € Ut(K) and b € H(K) such that a < b also b € Ut(K).
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2. Representation as sums of squares

In this section we show that every totally positive unit of H(K) is a sum of
squares of totally positive units of H(K). The crucial step in the whole paper is
the following lemma. The proof of this lemma is similar to a proof in [CLPR].
While in that paper the authors are dealing with complex numbers and the well-
known properties of the absolute value of a complex number we are working in

the field K (i) using the properties of the norm Ng ;) x -

LEMMA 2.1: Let x € H(K), a,y € UY(K) and assume a = 2% + y%. Then there
are u,v € H(K) such that:

(i) a=u?+0v2

()ueUﬂ )-
(i) 2 u2 < 9y
(iv) Ifz € U+( ) also v can be chosen in UT(K).
Proof: If x = 0 there is nothing to show. So assume z # 0. The field L = K (7)
where i = v/—1 is a Galois extension of K of degree 2 with 1, i as a basis. We define
z=z+1iyand w = 3z —iy. Then Ny x(z) = a and Ny g (w) = 322 + y°. Let
further ¢ = tw?z. An easy computation yields ¢ = b + ic where b = y ( 24y )

and ¢ = 1% Now we define
U= —-—b— and U= <
Np/k(w) Np/k(w)

By Lemma 1.1(ii) we have b, Ny x(w) € Ut(K) and hence also u € Ut(K). If
further x € UT(K) then also v € UT(K). Since

b* +¢® = Ny k(t) = Nk (iw®z) = Nk (w)’a
we obtain a = u? 4+ v2. Now it is only left to show that Z—z < éi— We have

3 3
b=y (322 +4?) > T2ty
y(4w +y>_4xy

Hence

and Lemma 2.1 is shown. ]

This lemma was the major step towards the main result of this paper. The

following corollary is an easy consequence of Lemma 2.1.
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COROLLARY 2.2: Letz € H(K), a,y € U*(K),e € QF and assume a = 2% + ¢
Then there are u,v € H(K) such that:

(i) a=1u? +v%
(i) u,u+v,u—ve UH(K).
(iii) v? < eu?.
(iv) If z € UT(K) also v can be chosen in UT(K).
Proof: W..o.g. we may assume £ < 1. Since y € H(K)* we have Ze€ H(K)
and hence 5— < n for some natural number n. Successive application of Lemma
2.1 gives us u,v € H(K) such that a = u? + v?,u € UH(K) and v? < eu?.
Furthermore v can be chosen as a totally positive unit of H(K) if z was one.
Now we have to show that also u + v € U*(K). Since

(u+v) (u—v)=u?-2v?>u? —cu? = (1 -¢e)u? € UH(K)

also (u+v)- (u—v) € Ut(K) by Lemma 1.1(ii). Thus u+v € H(K)X. To show
that both elements are sums of squares it suffices to show that they are positive
w.r.t. every ordering of the field K.

Let P be an arbitrary ordering of K. Then v € P or —v € P and since u is a
sum of squares we have u+v € P or u — v € P. But

(u+v) - (u—v) =u?—v® € UY(K) Cc P {0}

and since at least one factor is positive also the other factor has to be positive
w.r.t. P. Hence u £+ v € P and we are done. 1

PROPOSITION 2.3: Let z1,...,2, € H(K),a,y € UT(K),e € Qt and assume

n

a= inz + y2. Then there exist u;, ..., Uns1 € U*(K) such that
i=1
' n+1l

i) a=> ul.
i=1
(ii) ?<ea (1<i<n).
Proof: The proof is by induction on n. In the case n = 0 there is nothing to

show.

n = 1: First we apply Corollary 2.2 and obtain elements uy,v; € H(K) such
that @ = u? +v? and uy,u; £v; € UT(K). Then (u; +v1)2 + (u; —v1)? = 2a and
thus 2a is a sum of two squares of totally positive units of H(K). Now we apply
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Corollary 2.2 again and get elements u,, v, € H(K) such that 2a = u3 + vZ and
ug,us + v2 € UT(K). Then

0= U2 + V2 2+ U — Vg 2
B 2 2

and so also a is a sum of two squares of totally positive units of H(K). Now a

further application of Corollary 2.2 gives us the desired result.

n—1=n: First we apply the case n = 1 to z;,y and obtain u;,z € Ut(K)
such that % + % = u? + 2? and v? < e(u? + 22) < ea. Now let

bzzn':xfﬁ—z?

=2
Then a = b+u2. We can apply the induction hypothesis on b and obtain elements
Uy ..y Uns1 € UT(K) such that

n+1
b=2u? and ul<eb<ea (2<i<n+1).
=2
and Proposition 2.3 is proved. 1

Before we state and prove the main result of this section we need a further
definition. The second Pythagoras number P2(K) of a field K is the least natural
number n such that every sum of squares of elements of K is already a sum of n
squares. If such a number does not exist we let Po(K) = oo.

THEOREM 2.4: Let a € UY(K). Then there exists a natural number n < Py(K)

and elements uy,...,Un+1 € UT(K) such that
n+1

a= Z ul.
i=1

Proof: Asa e U¥(K), also a=! € Ut(K), so a=! < I for some natural number
. W.lo.g., I = m? for some m € N. Then there exist ZT1,...,Zn € K such that

n 1 2
a= Z.’L‘,z + (;{)
i=1

We may assume n < P2(K). From Lemma 1.1(i) we get z1,...,2, € H(K). The
assertion now follows from Proposition 2.3. ]
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3. Representation as sums of higher powers

In this section we prove that every totally positive unit of the real holomorphy
ring of a formally real field is also a sum of 2n-th powers of totally positive units
for all natural numbers n. Our proof is based on certain polynomial identities,
discovered by Hilbert. He used these so-called Hilbertian identities in his solution

of Waring’s Problem. We first have to prove the following lemma.

LEMMA 3.1: Let n be a natural number. Then there exists a positive rational
number ¢ such that for all sums u > 1 of 2n-th powers of totally positive units
of H(K) and all z € Ut(K) which satisfy z < ¢ we have

m
u+ 22 = E P
=1

for certainm € N, z1, ..., 2, € UH(K)

Proof: There exists a finite set S C Q* such that for all ¥ € N a polynomial
identity of the form

P n+1 s k 2n+42
W ()=S0 (Sewx)

1=0 j=1 =0
for certain s € N, ay,...,a, € Q%, ;€ S (1 <i<k,1<j<s)holds. See
e.g. [H]. We actually will make use of the fact that the set S only depends on
n but not on k. Of course the numbers s, ay,...,a; depend on k. We choose a
positive rational number ¢ such that

|or]

c> — for all ¢,3 € S.
(B

and let ¢ € Q* such that (16¢? +2) e? < 1. This yields
(2) 16c%? < 1 — 2¢?

which will be needed later. Since 0 < 22 < ¢? < 1 and u > 1 we have u — 2% €
U*(K). So we can apply Theorem 2.4 and obtain elements z1,.. .,z € Ut(K)
such that
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Since u € H(K) there exists a natural number ¢ such that ¢t + u € > K? and
hence u < ¢. Now we apply Proposition 2.3 and get elements y1, ...,y € UT(K)
such that

So we have

€
yi < 7

k
: (2<i<k) and hence Zyi <e.

Further \
1—52<u—z2§yf+(k—1)(%) <yi+el

This implies 1 — 2¢? < y? and together with (2) we obtain 4ce < y;. Now look
at the Hilbertian identity (1) and take twice the partial derivative w.r.t. Xy. We
obtain the identity

k n k n—1 s 2n
(Z X?) +2nX2 (Z Xf) = (2n+1) Z a]aoj (Z a;; X ) .
=0 j=1

=0

Let

u" 4 2n2%u" " = (2n + 1) Z a]aoja%" an
j=1
and therefore
2n+1 2n—1
2 _ 2n, 2n
u+ 2zt = - ljz:lajaojaljw =+ o Uu.

Since u is a sum of 2n-th powers of totally positive units of H{K) and all coef-
ficients are positive rational numbers, it suffices to show that all w; are totally

positive units of H(K'). This will be a consequence of the following estimate:

k
wj:“‘Z+y1+z—y1>y1—c(z+zya>.

(8]
1 =2 =2
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Since 0 < z < € we get
1 1 1
wj 2 41 = 2ce = Sy1+ 5 (31— dee) 2 sy
Now Lemma 1.1(ii) implies that w; € UT(K) (1 < j < s). This completes the

proof of Lemma 3.1. ]

COROLLARY 3.2: Let n € N and @ € Ut(K). Then 1+ a is a sum of 2n-th
powers of totally positive units of H(K).

Proof: First we apply Theorem 2.4 and obtain a representation

.

__ § 2

a= u;
i=1

for certain r € N,uy,...,u, € UT(K). Since a € U*(K) there is a natural
number m such that ¢ < m. Now let ¢ be as in Lemma 3.1 and choose a natural
number k such that m/k? < e. Then we have

r r F-]
i 2
a=Y uw=kY (F) =
i=1 i=1 i=]
for certain s € N,vy,...,v, € UT(K) with v? <& (1 <7 < s). We now show
by induction on ¢ that

i
1+ Z'vf
=1

is a sum of 2n-th powers of totally positive units of H(K). The case t = 0 is
clear. For the induction step apply Lemma 3.1. [

Now we are able to prove the main result of this paper.

THEOREM 3.3: Every totally positive unit of H(K) is a sum of 2n-th powers of
totally positive units of H(K).

Proof: Let a € Ut(K). Then also a~! € H(K) and hence a=! < m for some
natural number m. Then ¢ = (m + 1)a —1 > a. By Lemma 1.1(ii) we have
g € UY(K). By Corollary 3.2, (m + 1)a = 1 + ¢ is a sum of 2n-th powers of
totally positive units of H(K). But then a is clearly also a sum of 2n-th powers
of totally positive units. i
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4. Applications and Remarks

The first application of Theorem 3.3 is a positive answer to Schiilting’s question.

COROLLARY 4.1: Let n € N and f, g € R[X] be of the same degree and without
real zeroes. Assume that f/g is positive definite. Then there are m € N and
fivg: € RIX] (1 << m) without real zeroes withdeg f; = degg; (1< i< m)

such that X
; (fi) "
9 z::l 9/

Moreover if n = 1 we can take m = 3.
Proof: As
H(R(X)) ={h € R(X)| nthe ) R(X)? for some n € N}

one can easily check that a rational function h is an element of H(R(X)) iff it is
bounded on R. Taking into account that the positive definite rational functions
are exactly the sums of squares of elements of R(X), we find that a rational
function is an element of H(R(X))* N3 R(X)? iff it is positive definite and of the
form f/g for some f, g € R[X] without real zeroes and such that deg f = degg.
The first assertion now follows by Theorem 3.3. Since Py(R(X)) = 2 (see e.g.
Chap. 9, Cor. 2.4 and Chap. 11, Cor. 1.10 [L1]) we obtain m = 3 in the case
n = 1 by Theorem 2.4. ]

In the same way one defines the second Pythagoras number of a field one can
define higher Pythagoras numbers of a field. The fourth Pythagoras number
P4(K) of the field K is the least natural number n such that every sum of fourth
powers of elements of K is already a sum of n fourth powers. If such a number
does not exist we let P4(K') = oo. For the so-called pythagorean fields (i.e. fields
with P2(K) = 1) it is shown in [S] that always P4(K) < 3. The next corollary
gives a better bound.

COROLLARY 4.2: Let K be a formally real pythagorean field. Then P4(K) < 2.

Proof: Let a € K be a sum of fourth powers of elements of K. We have to
show that a is a sum of two fourth powers. As Py(K) = 1, Prop. 2.11 [B2] yields
¢ € H(K)* and b € K such that a = eb*. Then also ¢ is a sum of fourth powers
and hence a sum of squares, so ¢ € Ut(K). Now we apply Theorem 2.4 and
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obtain uy,ug € UT(K) such that ¢ = u? + u3. Since Po(K) = 1, the elements
uy, up are already squares. Hence u; = z? and up = x3 for certain zy,1; € K.
Altogether this implies a = (z1b)* + (z2)*, and we are done. 1

Prof. A. Prestel (Konstanz) pointed out an alternative proof of Theorem 2.4.
His proof gives another bound for the number of summands in the representation
and it only works for fields with finite second Pythagoras number but it is shorter
and more conceptual than our proof. We will give a sketch of his proof:

Let Mg be the set of all real valued places of K. Then every a € H(K) acts
by evaluation as a real valued function & on Mg:

a: MK——vR
A= Aa)

Mg is quasi-compact w.r.t. the coarsest topology such that all functions a are
continuous (Theorem 2.17 [B1]). Clearly

®: H(K) - C(Mg,R)
a—a
is a homomorphism of rings. The image of ® is dense in C{Mg,R) w.r.t. the
supremum norm(Theorem 2.20 {B1]). Further for a € H(K) we have:

(1) a € UN(K) < a(A\) >0 for all A € Mg.

See 1.3 [B2]. Now let a € UT(K) and n = P5(K). Choose some small positive
rational number ¢ which will be fixed later. Let f: Mx — R be a continuous
function such that ) )

— —_— P 4 — P

Qn(l gla< fr< o
Since im(®) is dense in C(Mf, R), there exists an element b € H(K) such that

1 - 1
1-e)a<bt< —a.
(1-ela<b*< om0

2n
By (1) we have b* € Ut (K). Now let ¢ = b2. Then also ¢ € U*(K) and by (1)
1 2 2 1 +
(2) 5,07 ¢ ¢ 2n(1 e)a e UT(K).

Hence there exist x,...,z, € H(K) such that

1 n
2 2
LRPIEELS
1=
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Since n = Py(K) it follows by multiplication by 2n

a—ZZyz—kznc —22 y1+c =Z(c+yz + c—yi)Q)

i=1

for certain vy, ...,y € H(K). By (2),

and hence
n n 1 ) 1
2 2 _ 2 _ _ =
y; < -E_lyi —n;_lzvi—n(%a c) < 5ea.

If ¢ is sufficiently small we get ¢+ y; € UtT(K) as in the proof of Corollary 2.2.

In the proof of Corollary 4.1. we used that a rational function h € R(X) is an
element of H(R(X)) iff it is bounded on R. One can easily see that this is also
true for a real closed field R with an archimedean ordering instead of the field R.
Hence Corollary 4.1 holds not only for the field R of real numbers but also for any
real closed field with an archimedean ordering. However, it is not clear whether
Corollary 4.1 holds for an arbitrary real closed field R or not. To solve this
problem one perhaps has to study the totally positive units of the relative real
holomorphy ring Hr(R(X)),i.e., the intersection of all residually real valuation
rings of R(X) which contain the field R.

It is also not clear whether the bound of P5(K) + 1 summands in Theorem 2.4
is the best possible.

However, for pythagorean fields it is the best possible bound as the following
example shows:

The field Q(v/2) has exactly two orderings induced from the two different
embeddings of this field into R. Let Ry, R, be real closures of Q(v/2) w.r.t.
these two orderings in some fixed algebraic closure of Q. Let K = Ry N Ry. As
an intersection of real closed fields, K is pythagorean, so Po(K) = 1. Clearly
2 € Ut(K). But 2 is not a square of a totally positive unit of H(K). Otherwise
2 would be a fourth power and hence v/2 or —v/2 is a square, which is impossible
by construction.

In the above example we have P;(K) = 1 and P4(K) # 1. So the bound in
Corollary 4.2 is the best possible.
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