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A B S T R A C T  

In this paper we will show that every totally positive unit of the real 
holomorphy ring of a formally real field is a sum of 2n-th powers of totally 
positive units for all natural numbers n. Moreover, in the case n = 1 we 
give a bound on the number of summands required in such a representation. 

Introduct ion  

At the  Oberwolfach conference on "real  a lgebra ic  geomet ry"  in 1987 H. -W.  Schfil- 

t ing raised the  following quest ion:  

PROBLEM: Let f ,  g E R[X] be of the same degree and without real  zeroes. As- 

sume  that f /g is positive definite. Are  there  f l ,  gi E R[X] (1 < i < n) without 

rea l  zeroes with d e g f l  = degg l  (1 < i < n) such that 

g i=1 

for a cer ta in  n a t u r a l  n u m b e r  n? 

Since a r a t iona l  funct ion h E R ( X )  is a t o t a l l y  posi t ive  unit  of the  real  holo- 

morphy  r ing H ( R ( X ) )  of R ( X )  iff it  is pos i t ive  definite and  of the  form h = f / g  

for some f ,  g C R[X] of the  same degree and  wi thou t  real  zeroes we can general ize  

the  above problem:  
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P R O B L E M :  IS every totally positive unit of the real holomorphy ring of a formally 

real field a sum of squares of units ? 

The aim of this paper is to give a positive answer to both problems. We actually 

prove the stronger result that every totally positive unit of the real holomorphy 

ring is a sum of 2n-th powers of totally positive units for arbitrary n E N. 

1. Basic notations and preliminary remarks 

Throughout this paper K will be a formally real field. Thus char(K) = 0 and 

we may assume that Q c K.  The real holomorphy ring of K will be denoted 

by H(K). By definition H(K) is the intersection of all residually real valuation 

rings (i.e. valuation rings with formally real residue class field) of K. Various 

descriptions of H(K) are well-known, e.g. 

(1) H(K) = {a E K I n • a E E K2 for some n E N} 

(see e.g. Theorem (2.16),[B1]). Here ~ K 2 is the set of sums of squares of 

elements of K. It is also the set of totally positive elements of K (i.e. elements 

which are positive w.r.t, every ordering of K).  See e.g. [P], Corollary 1.9. 

Obviously Q c H(K). 

For a, b E K we define 

a<_bc::::~b-aE E K  2. 

Clearly _< is a preordering of K. It is easy to see that 

(2) H(K) •  K2 = {a E KI _1 < a < n 
n 

for some n E N}. 

This is the set of the totally positive units of H(K). We denote it by U+(K).  

The following lemma is an immediate consequence of (1) and (2). 

LEMMA 1.1: 
n 

(i) For a l , . . . ,an  E K we have E a~ E H(K) r a l , . . . ,an  E H(K). 
i = 1  

(ii) For a E U+(K)  and b E H(K) such that a ~_ b also b E U+(K).  
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2. R e p r e s e n t a t i o n  as  s u m s  o f  s q u a r e s  

In this  sect ion we show tha t  every to t a l l y  posi t ive  unit  of H ( K )  is a sum of 

squares of t o t a l l y  posi t ive  uni ts  of H ( K ) .  The crucial  s tep in the  whole p a p e r  is 

the  following lemma.  The  proof  of this  l e m m a  is s imi lar  to  a p roof  in [CLPR]. 

Whi le  in t ha t  pape r  the  au thors  are deal ing wi th  complex  numbers  and  the  well- 

known proper t i e s  of the  absolu te  value of a complex  number  we are working in 

the  field K ( i )  using the  p roper t i e s  of the  n o r m  N K ( i ) / K  . 

LEMMA 2.1: Let  x C H ( K ) ,  a , y  C U + ( K )  and assume a = x 2 + y2. Then there 

are  u, v E H ( K )  such that: 

(i) a = u 2 + v 2. 

(ii) u e U + ( K ) .  
V 2 X 2 (iii) ~ < 1 --  9 y 2 .  

(iv) I f  x E U + ( K )  also v can be chosen in U + ( K ) .  

Proos If  x = 0 there  is noth ing  to show. So assume x # 0. The  field L = K ( i )  

where i = vzL1 is a Galois  extension of K of degree 2 wi th  1, i as a basis.  We define 
1 1 2 y2. z = x + iy and  w = ~x - iy. Then  N L / K ( Z  ) ---- a and N L / K ( W  ) ~- ~x + Let  

fur ther  t = iw2z. A n  easy c o m p u t a t i o n  yields t = b + ic where b = y (3x2 + y2) 

I 3 Now we define and  c = ~x . 

b c 
u - and  v - 

NL/K(W) NL/K(W)" 

By L e m m a  1.1(ii) we have b, NL/K(W) E U + ( K )  and hence also u E U + ( K ) .  If 

fur ther  x C U + ( K )  then  also v C U + ( K ) .  Since 

b 2 + c 2 = NL/K( t )  = NL/K(iW2Z) = NL/K(W)2a 

v 2 ]_ x 2 
we ob t a in  a = u 2 + v 2. Now it is only  left to show tha t  ~-~ < ~ 7 "  We have 

Hence 

and  L e m m a  2.1 is shown. 

v 2 c 2 1 x 2 

u 2 b 2 9 y2 

| 

This  l e m m a  was the  m a j o r  s tep  towards  the  ma in  resul t  of this  paper .  The  

following corol la ry  is an easy consequence of L e m m a  2.1. 
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COROLLARY 2.2: Let  x E H ( K ) ,  a, y E U + ( K ) ,  e E Q+ and  assume a -- x 2 -t- y2. 

Then there  a re  u, v E H ( K )  such that: 

(i) a = u 2 + v 2. 

(ii) u, u + v, u - v E U + ( K ) .  

(iii) v 2 < eu 2. 

(iv) I f  x E U + ( K )  also v can be chosen in U + ( K ) .  

Proof" W.l.o.g.  we m a y  assume e < 1. Since y �9 H ( K )  • we have ~ �9 H ( K )  
x 2 

and hence ~ < n for some na tu ra l  number  n. Successive app l i ca t ion  of L e m m a  

2.1 gives us u ,v  �9 H ( K )  such t ha t  a = u 2 + v2, u �9 U + ( K )  and  v 2 < eu 2. 

Fu r the rmore  v can be  chosen as a t o t a l l y  posi t ive  uni t  of H ( K )  if x was one. 

Now we have to  show tha t  also u 4- v �9 U + ( K ) .  Since 

( u - t - v ) . ( u - v ) - - u  2 - v  2 > u  2 - E u  2 - = ( 1 - e ) u  2 E U + ( K )  

also ( u + v ) .  ( u - v )  E U + ( K )  by  L e m m a  1.1(ii). Thus  u4-v  E H ( K )  • To show 

tha t  b o t h  e lements  are sums of squares i t  suffices to show tha t  t hey  are posi t ive  

w.r . t ,  every order ing  of the  field K .  

Let  P be  an  a r b i t r a r y  order ing  of K .  Then  v E P or - v  E P and  since u is a 

sum of squares  we have u + v E P or u - v E P .  But  

( u + v ) .  ( u -  v) = u 2 - v 2 E U + ( K )  C P \ { 0 }  

and  since a t  least  one factor  is posi t ive  also the  o ther  factor  has to  be  posi t ive  

w . r . t . P .  Hence u + v E P and  we are  done. I 

PROPOSITION 2.3: Let x l , . . . , x n  E H ( K ) , a , y  E U + ( K ) , e  E Q+ and assume 
n 

a ---- ~ x i  2 Jr y2. Then there  exist u l , . . .  ,un+l e U + ( K )  such t ha t  
i----1 

n + l  

(i) a = ~ u~. 
i----1 

2 (1 < i < n).  (ii) u i < ea 

Proof'. The  proof  is by  induct ion  on n. In  the  case n = 0 there  is no th ing  to 

show. 

n = 1: F i r s t  we app ly  Corol la ry  2.2 and ob ta in  e lements  u l , v l  E H ( K )  such 

t ha t  a = u 2 § v 2 and u l ,  Ul 4- Vl E C + (K) .  Then  (ul  § vl)2 + (u l  - v~)2 = 2a and  

thus  2a is a sum of two squares of to t a l ly  posi t ive uni ts  of H ( K ) .  Now we app ly  
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Corollary 2.2 again and get elements u2, v2 C H(K) such that 2a = u~ + v~ and 

u2, u2 i v2 �9 U+(K).  Then 

u2 + v2 + 
a =  2 2- 

and so also a is a sum of two squares of totally positive units of H(K). Now a 

further application of Corollary 2.2 gives us the desired result. 

n - 1  ~ n :  First we apply the c a s e n =  1 t o x l , y  and ob ta inu l ,  z 6  U+(K) 

such that x 2 + y2 = u~ + z 2 and u~ < e(u21 + z 2) _< ~a. Now let 

n 

b = F x : + z  2 
i=2  

Then a = b+u~. We can apply the induction hypothesis on b and obtain elements 

u2,.. .  ,U~+l E U+(K) such that 

n + l  

b = ~ u  2 and u 2 < e b < c a  ( 2 < i < n + l ) .  
i----2 

and Proposition 2.3 is proved. ! 

Before we state and prove the main result of this section we need a further 

definition. The second Pythagoras number P2(K) of a field K is the least natural 

number n such that every sum of squares of elements of K is already a sum of n 

squares. If such a number does not exist we let P2(K) = oc. 

THEOREM 2.4: Let a 6 U+(K).  Then there exists a natural number n < P2(K) 

and elements Ul , . . . ,  un+l 6 U+(K)  such that 

n-~- I 
a =  Z u  2. 

Proof: As a E U+(K),  also a -1 E U+(K),  so a -1 < l for some natural number 

I. W.l.o.g., l -- m 2 for some m E N. Then there exist x l , . . . ,  xn E K such that 

i----1 

We may assume n _< P2(K). From Lemma 1.1(i) we get x l , . . .  ,xn E H(K). The 

assertion now follows from Proposition 2.3. ! 
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3. R e p r e s e n t a t i o n  as s u m s  o f  h igher  powers  

In this section we prove that  every totally positive unit of the real holomorphy 

ring of a formally real field is also a sum of 2n-th powers of totally positive units 

for all natural  numbers n. Our proof is based on certain polynomial identities, 

discovered by Hilbert. He used these so-called Hilbertian identities in his solution 

of Waring's Problem. We first have to prove the following lemma. 

LEMMA 3.1: Let n be a natural number. Then there exists a positive rational 

number ~ such that for all sums u >_ 1 of 2n-th powers of totaIly positive units 

of H ( K )  and all z E U + ( K )  which satisfy z < ~ we have 

$n 

u + z 2 = X-" z? n 

i-=l 

for certain m E N, Z l , . . . ,  zm E U+(K)  

Proof" There exists a finite set S C Qx such that  for all k E 1~ a polynomial 

identity of the form 

{ k , n + l  s ( ~  I ~'~+2 

i : 0  " :  \ i : 0  / 

for c e r t a i n s  E N, a l , . . . , a s  E QX,a i j  E S ( 1 <  i < k, 1 < j  < s) holds. See 

e.g. [HI. We actually will make use of the fact that  the set S only depends on 

n but not on k. Of course the numbers s, a l , . . . ,  a8 depend on k. We choose a 

positive rational number c such that  

c > ~-~ for all a , /3 E S. 

and let e E Q+ such that  (16c 2 + 2) e 2 < 1. This yields 

(2) 16C2~ 2 < 1 - 2~ 2 

1 which will be needed later. Since 0 < z 2 < ~2 < ~ and u > 1 we have u - z 2 E 

U+(K) .  So we can apply Theorem 2.4 and obtain elements X l , . . . ,  xk E U + ( K )  

such that  
k 

i----1 
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Since u E H(K) there exists a natural  number t such that  t + u E ~ K 2 and 

hence u _< t. Now we apply Proposition 2.3 and get elements Yl,. �9 Yk E U+(K)  

such that  

k () 2 ( u - z 2 )  < ( 2 < i < k ) .  u - z  2 = E y ~  and y2 < ~ 
i = 1  

So we have 

k 
C 

(2 < i < k) and hence E yi < e. 
i = 2  

Further 

This implies 1 - 2e 2 < y2 and together with (2) we obtain 4ee < Yl. Now look 

at the Hilbertian identity (1) and take twice the partial  derivative w.r.t. Xo. We 

obtain the identity 

n- -1  s 2n  

(3) (i:~oX~)n+2nX2 (~:~oXg) =(2n+l)j~= aja2j (i:~oO~jX~ ) 

Let 
k 

wj = c~~ z + yl + E c~i--A-J �9 ( l < j < s ) .  
OZlj i=2 aU y, - - 

Then the substitution X0 ~ z, Xi H yi (1 < i < k) yields 

8 
u n + 2nz2u '~-1 = (2n + 1) ~ ajOZojoZlj2 2nwj2n 

j = l  

and therefore 

u+z2 - 2 n + 1  
2n 

1 ~ 2 2n  2n 2n - -  1 

- -  u n _ I  ~ ajO~ojOQj w j  + ~ - u .  

j = l  

Since u is a sum of 2n-th powers of totally positive units of H(K) and all coef- 

ficients are positive rational numbers, it suffices to show that  all wj are totally 

positive units of H(K). This will be a consequence of the following estimate: 

0~0 2 
Wj  = Z + Yl  Jc" ~ Yi ~ Yl  -- C Z + yj . 

~ i = 2  ~ l j  i = 2  
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Since 0 < z < e we get 

1 1 1 
wj >_ Yl - 2cr = ~Yl + ~ (yl - 4c~) _> ~Yl. 

Now Lemma 1.1(ii) implies that  wj E U+(K)  (1 _< j <_ s). This completes the 

proof of Lemma 3.1. I 

COROLLARY 3.2: Let n E N and a E U+(K) .  Then 1 + a is a sum of 2n-th 

powers of totally positive units of H ( K ). 

Prool~ First we apply Theorem 2.4 and obtain a representation 

r 

a =  

i = l  

for certain r E N, u l , . . . , u r  �9 U+(K) .  Since a �9 U+(K)  there is a natural  

number m such that  a _< m. Now let ~ be as in Lemma 3.1 and choose a natural  

number k such that  m / k  2 < r Then we have 

a = u i k-~] 
i : 1  i = l  i----1 

2 (1 < i < s). We now show for certain s �9 N, v l , . . . , v s  �9 U+(K)  with v i < c 

by induction on t that  
t 

I + E V ~  
i = l  

is a sum of 2n-th powers of totally positive units of H(K) .  The case t = 0 is 

clear. For the induction step apply Lemma 3.1. | 

Now we are able to prove the main result of this paper. 

THEOREM 3.3: Every totally positive unit of H ( K )  is a sum of 2n-th powers of 

totally positive units of H( K).  

Proo~ Let a �9 U+(K) .  Then also a -1 �9 H ( K )  and hence a -1 _< m for some 

natural  number m. Then q = (m + 1)a - 1 > a. By Lemma 1.1(ii) we have 

q �9 U+(K) .  By Corollary 3.2, ( m + l ) a  = l + q i s  a sum of 2n-th powers of 

totally positive units of H(K) .  But then a is clearly also a sum of 2n-th powers 

of totally positive units. | 



VoL 85, 1994 TOTALLY POSITIVE UNITS 347 

4. A p p l i c a t i o n s  a n d  R e m a r k s  

The first application of Theorem 3.3 is a positive answer to Schfilting's question. 

COROLLARY 4.1 : Let n �9 N and f ,  g �9 ]R[X] be of the same degree and without 

real zeroes. 

:,, �9 

such that 

Assume that f /g is positive definite. Then there are m C N and 

(1 < i < m) without real zeroes with deg fi = deg g~ (1 < i < m) 

_:: 
. 

g i=1 

Moreover if n = 1 we can take m = 3. 

Proof: As 

H ( ~ ( X ) )  = {h E R(X)[ n=t=h E Z R ( X ) 2  for some n E N} 

one can easily check that  a rational function h is an element of H ( R ( X ) )  iff it is 

bounded on R. Taking into account that  the positive definite rational functions 

are exactly the sums of squares of elements of R(X),  we find that  a rational 

function is an element of H ( R ( X ) )  x f 3 ~  R(X) 2 iff it is positive definite and of the 

form f / g  for some f ,  g E R[X] without real zeroes and such that  deg f = deg g. 

The first assertion now follows by Theorem 3.3. Since P2(R(X))  = 2 (see e.g. 

Chap. 9, Cor. 2.4 and Chap. 11, Cor. 1.10 [L1]) we obtain m = 3 in the case 

n = 1 by Theorem 2.4. I 

In the same way one defines the second Pythagoras  number of a field one can 

define higher Pythagoras  numbers of a field. The fourth Pythagoras  number 

P4(K)  of the field K is the least natural  number n such that  every sum of fourth 

powers of elements of K is already a sum of n fourth p0wers. If such a number 

does not exist we let P4(K)  = oo. For the so-called pythagorean fields (i.e. fields 

with P~.(K) = 1) it is shown in [S] that  always P4(K)  _< 3. The next corollary 

gives a bet ter  bound. 

COROLLARY 4.2: Let K be a formally real pythagorean field. Then P4(K)  _< 2. 

Proof'. Let a E K be a sum of fourth powers of elements of K.  We have to 

show that  a is a sum of two fourth powers. As P2(K)  = !, Prop. 2.11 [B2] yields 

e E H ( K )  x and b C K such that  a = eb 4. Then also ~ is a sum of fourth powers 

and hence a sum of squares, so e E U+(K) .  Now we apply Theorem 2.4 and 
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obtain ul,u2 E U+(K)  such that  ~ = u~ + u22. Since P2(K) = 1, the elements 

ul,u2 are already squares. Hence ul = x~ and u2 = x22 for certain xl,x2 E K. 

Altogether this implies a = (Xlb) 4 q- (x2b) 4, and we are done. I 

Prof. A. Prestel (Konstanz) pointed out an alternative proof of Theorem 2.4. 

His proof gives another bound for the number of summands in the representation 

and it only works for fields with finite second Pythagoras number but it is shorter 

and more conceptual than our proof. We will give a sketch of his proof: 

Let MK be the set of all real valued places of K.  Then every a E H(K) acts 

by evaluation as a real valued function ~ on MK: 

& MK --+JR 

H ~(a) 

MK is quasi-compact w.r.t, the coarsest topology such that  all functions ~ are 

continuous (Theorem 2.17 [B1]). Clearly 

r H(K) ---, C(MK, R) 

a~--*5 

is a homomorphism of rings. The image of r is dense in C(MK,~) w.r.t, the 

supremum norm(Theorem 2.20 [B1]). Further for a E H(K) we have: 

(1) a E U + ( K )  c= :>&(A)>0  for all A E M K .  

See 1.3 [B2]. Now let a E U+(K)  and n = P2(K).  Choose some small positive 

rational number e which will be fixed later. Let f :  MK --.+ ]{ be a continuous 

function such that  
1 /4 1~  

~nn(l - e)5 < < ~n a. 

Since im(~) is dense in C(MK, ]{), there exists an element b 6 H(K) such that  

1 1 ( 1 - e ) & < ~ 4 <  ^ 
2n Knn a" 

By (1) we have b 4 E U+(K) .  Now let c = b 2. Then also c E U+(K)  and by (1) 

1 c2 1 (2) - - a  - c 2, - (1 - e)a E U+(K) .  
2n 

Hence there exist x l , . . . ,  x,~ E H(K) such that  

1 - - a  ~ ~ x 2 C 2. 
2n i + 

i=1 
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Since n = P2(K) it follows by multiplication by 2n 

a=2Ey2+2nc2=2  (y~ + c2) = (c+yi)2+(c-yi) 2 
i=1  i=1 i=1 

for certain Yl,..., Yn E H(K). By (2), 

1 1 
_ C 2 ~ a  < ~ a  

and hence 

2 < E  2 E 
i = l  i = l  

If e is sufficiently small we get c �9 Yi E U+(K)  as in the proof of Corollary 2.2. 

In the proof of Corollary 4.1. we used that a rational function h E •(X) is an 

element of H(I~(X)) iff it is bounded on 1~. One can easily see that  this is also 

true for a real closed field R with an archimedean ordering instead of the field R. 

Hence Corollary 4.1 holds not only for the field R of real numbers but also for any 

real closed field with an archimedean ordering. However, it is not clear whether 

Corollary 4.1 holds for an arbitrary real closed field R or not. To solve this 

problem one perhaps has to study the totally positive units of the relative real 

holomorphy ring HR(R(X)),i.e., the intersection of all residually real valuation 

rings of R(X) which contain the field R. 

It is also not clear whether the bound of P2(K) + 1 summands in Theorem 2.4 

is the best possible. 

However, for pythagorean fields it is the best possible bound as the following 

example shows: 

The field Q(~/2} has exactly two orderings induced from the two different 

embeddings of this field into •. Let R1, R2 be real closures of Q(~/2) w.r.t. 

these two orderings in some fixed algebraic closure of Q. Let K = R1 N R2. As 

an intersection of real closed fields, K is pythagorean, so P2(K) = 1. Clearly 

2 E U+(K).  But 2 is not a square of a totally positive unit of H(K). Otherwise 

2 would be a fourth power and hence v ~  or - v ~  is a square, which is impossible 

by construction. 

In the above example we have P2(K) = 1 and P4(K) ~ 1. So the bound in 

Corollary 4.2 is the best possible. 
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